Comparison of accelerometry stride time calculation methods.
نویسندگان
چکیده
Inertial sensors such as accelerometers and gyroscopes can provide a multitude of information on running gait. Running parameters such as stride time and ground contact time can all be identified within tibial accelerometry data. Within this, stride time is a popular parameter of interest, possibly due to its role in running economy. However, there are multiple methods utilised to derive stride time from tibial accelerometry data, some of which may offer complications when implemented on larger data files. Therefore, the purpose of this study was to compare previously utilised methods of stride time derivation to an original proposed method, utilising medio-lateral tibial acceleration data filtered at 2Hz, allowing for greater efficiency in stride time output. Tibial accelerometry data from six participants training for a half marathon were utilised. One right leg run was randomly selected for each participant, in which five consecutive running stride times were calculated. Four calculation methods were employed to derive stride time. A repeated measures analysis of variance (ANOVA) identified no significant difference in stride time between stride time calculation methods (p=1.00), whilst intra-class coefficient values (all >0.95) and coefficient of variance values (all <1.5%) indicate good reliability. Results indicate that the proposed method possibly offers a simplified technique for stride time output during running gait analysis. This method may be less influenced by "double peak" error and minor fluctuations within the data, allowing for accurate and efficient automated data output in both real time and post processing.
منابع مشابه
Stride variability measures derived from wrist- and hip-worn accelerometers.
Many epidemiological and clinical studies use accelerometry to objectively measure physical activity using the activity counts, vector magnitude, or number of steps. These measures use just a fraction of the information in the raw accelerometry data as they are typically summarized at the minute level. To address this problem, we define and estimate two measures of temporal stride-to-stride gai...
متن کاملComparison of accelerometry and oxymetry for measuring daily physical activity.
To assess the validity of accelerometry in measuring daily physical activity, the energy consumption calculated by accelerometry, with respiratory gas analysis as a reference, was evaluated in 45 non-athletes during various exercise tests. Subjects were required to (1) walk on a treadmill ergometer at various speeds, (2) walk on a treadmill ergometer at a fixed speed and with a stride of 20% mo...
متن کاملThe private life of echidnas: using accelerometry and GPS to examine field biomechanics and assess the ecological impact of a widespread, semi-fossorial monotreme.
The short-beaked echidna (Tachyglossus aculeatus) is a monotreme and therefore provides a unique combination of phylogenetic history, morphological differentiation and ecological specialisation for a mammal. The echidna has a unique appendicular skeleton, a highly specialised myrmecophagous lifestyle and a mode of locomotion that is neither typically mammalian nor reptilian, but has aspects of ...
متن کاملReal-Time Gait Cycle Parameter Recognition Using a Wearable Accelerometry System
This paper presents the development of a wearable accelerometry system for real-time gait cycle parameter recognition. Using a tri-axial accelerometer, the wearable motion detector is a single waist-mounted device to measure trunk accelerations during walking. Several gait cycle parameters, including cadence, step regularity, stride regularity and step symmetry can be estimated in real-time by ...
متن کاملAssessment of spatio-temporal gait parameters from trunk accelerations during human walking.
This paper studies the feasibility of an analysis of spatio-temporal gait parameters based upon accelerometry. To this purpose, acceleration patterns of the trunk and their relationships with spatio-temporal gait parameters were analysed in healthy subjects. Based on model predictions of the body's centre of mass trajectory during walking, algorithms were developed to determine spatio-temporal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 49 13 شماره
صفحات -
تاریخ انتشار 2016